## 111B Section Week 8

Overview: Work on the following problems one at a time, either by yourself or in small-groups. After a sufficient amount of time has passed, we will discuss the solutions as a class. Attending section counts toward your participation grade.

1. Let $I=(2, x)$ be the ideal of $\mathbb{Z}[x]$ generated by 2 and $x$.
(a) Show that a polynomial $\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{Z}[x]$ belongs to $I$ if and only if $a_{0}$ is even.
(b) Show that $I$ is a maximal ideal of $\mathbb{Z}[x]$.
2. Let $R$ be a ring and $M$ an ideal.
(a) Prove that if $R / M$ is a field, then $M$ is a maximal ideal.
(b) Use 2(a) and the First Isomorphism Theorem to give an alternative proof of 1(b).
